

University of Nevada, Reno
College of Engineering

Department of Computer Science

Dragonlord Chronicles

Team 18
Sean Stevens

Jonathan Meade

Ryan Lieu

Christine Vaughan

Instructors
Sergiu Dascalu

Devrin Lee

Advisor
Eelke Folmer

November 19, 2018

2

Table of Contents

Abstract 3

Introduction 3

High-Level Design 5

Detailed Design 14

User Interface Design 1​8

Glossary 2​4

Contributions 2​6

Dragonlord Chronicles - Design

3

Abstract
The goal of this project is to create a digital interactive roleplaying game (RPG) that an average
person can use for personal entertainment. The primary focus of the game will be fighting,
capturing, and training dragons in a medieval fantasy setting, with mechanics not unlike other
RPGs such as Nintendo’s ​Pokémon​ series. The game will offer its players an immersive and
engaging narrative experience, as well as complex strategy required for many of the combat
encounters. The game will be developed for Microsoft’s Windows platform.

Introduction
Dragonlord Chronicles aims to create a fantasy RPG where the player fights, captures, and
controls dragons. The game will be a top-down 2D game where the player can explore a large
open world and complete a main quest.

The most significant progress made since the last report is the development of the main story
and combat system of the game. The player will awake in an abandoned temple in a strange
and unfamiliar world. In this temple, the player will discover an ancient prophecy depicting a
hero that would rise up and defeat the greatest of dragons: the Dragonlord. Armed with the
knowledge of this prophecy, and some other miscellaneous gear, the player steps out into a
strange world ruled by dragons. The player will encounter their first dragon, which the player
must battle and defeat in order to survive. Upon emerging victorious from this battle, the player
discovers they are able to magically break the dragon’s will and enlist their assistance in the
world.

From here, the player discovers they are the one told of in the prophecy and sets out to build
their dragon army to overthrow the Dragonlord. The player will travel across the continent and
gain enough power to overthrow each of the Dragonlord’s generals and convert them to their
cause before finally overthrowing the Dragonlord himself.

The combat system will consist of the player as the primary participant in combat, with up to one
companion dragon by their side to complement their skillset. The player and dragon are each
able to perform one action per turn, such as attacking, casting a spell, using an item, etc. Only
one dragon may be active at a time, but different dragons can be swapped in and out during
combat.

Dragonlord Chronicles - Design

4

Unlike the player, dragons are magical creatures capable of casting spells, and every dragon
have different magical capabilities. Each dragon the player is able to capture will have an
element associated with it, a class, experience, and a tier.

Each dragon will also have an element associated with it, and will gain bonuses or penalties
when facing enemies of other elements. For example, and fire dragon will receive a bonus to
damage against ice dragons, but receive a penalty against earth dragons.

The classes will consist of generalized roles, such as Tank for drawing enemy attention and
damage away from the player, Healer for restoring health, Brawler for dealing damage, and
Sorcerer for specialization in magic. Dragons of a particular class will have spells and magical
abilities to complement their roles.

Experience will determine the level and physical stats of a dragon, while tiers will determine the
rarity and magical prowess of a dragon. Experience can be gained whenever the dragon
participants in a successful combat encounter, but tiers can only be gained by performing
magical rituals with rare and costly components. Dragons will begin with a randomized
experience level and tier appropriate to the stage in the game they are encountered.

Dragonlord Chronicles - Design

5

High-Level Design

Figure 1: A component-based system level diagram of Dragonlord Chronicles’ structure.

Figure 1 shows a model of the component structure of the game. The video game hardware will
be a Windows machine or a gaming console (time permitting). It will accept player input via a
keyboard or game controller and will provide the visual and auditory outputs of the game
through a screen and speakers. Unity’s game engine will handle the execution of the game,
including visuals, music and sound effects, and all C# scripts that dictate how the game will
respond to player input. Assets is a directory which will hold all scripts, sprites and other art,
audio files, and any other data the game may need to retrieve.

For the data structures, Unity offers a special object called a scriptable object. A scriptable
object is a data container that hold relevant information used to instantiate objects within a
scene in Unity. In this game, the player will have its own unique scriptable object, and all
dragons will have their own scriptable object associated with them.

The player’s scriptable object will have the following attributes:

● Health:​ A representation of the amount of damage taken. When health reaches zero, the
player dies.

● Offense:​ A numeric representation of how well the player is able to inflict damage on
enemies.

● Defense:​ A numeric representation of how well the player is able to mitigate damage
from enemies.

● Gold:​ A numeric value representing the currency in the player’s possession.
● Inventory:​ A list of all items in the possession of the player.
● Party:​ A list of the dragons currently accompanying the player, to a maximum of four.

Dragonlord Chronicles - Design

6

● Default Dragon:​ The default dragon that will assist a player in combat. The Default
Dragon must be in the player’s Party and may be changed outside of combat.

● Active Dragon:​ The dragon currently assisting the player in combat. The Active Dragon
is always the Default Dragon at the beginning of combat, but may be swapped for
another dragon in the player’s Party during combat.

The dragons will have a generalized scriptable object. Each attribute will be assigned when the
dragon is first created. If the dragon is captured by the player, the object will be saved and
attached to the dragon permanently, else it will be deleted once the combat has concluded.

● Health:​ A representation of the amount of damage taken.
● Element:​ The element the dragon is associated with. A dragon may have exactly one

element, which may not be changed. Possible elements include but are not limited to:
Fire, Ice, Water, Earth, Lightning, Air, Flora, Fauna, Light, and Dark.

● Level:​ A numerical value that determines the strength of the dragon’s Offense and
Defense stats. Can be increased by gaining experience.

● Experience:​ A numeric value that increases a dragon’s level whenever a threshold is
reached. Experience is gained following a combat, and the amount gained is
proportional to the level of the enemy defeated.

● Tier:​ A numeric value that represents a dragon’s magical capabilities and available
spells. Unlike experience, tiers can only be gained by performing special rituals which
require rare and expensive components.

● Offense:​ A numeric representation of how well the dragon is able to inflict damage on
enemies.

● Defense:​ A numeric representation of how well the dragon is able to mitigate damage
from enemies.

● Magic:​ A list of all the spells a dragon is capable of casting.

Dragonlord Chronicles - Design

7

The following tables describe main data structures that will be used in the project:

Class StateManager

Method LoadGame

Visibility public

Return bool

Parameters string

Description This function loads the latest save. The parameter is the persistent data
path. It returns true if save data exists and it is readable. It returns false if
no data can be loaded.

Class StateManager

Method SaveGame

Visibility public

Return bool

Parameters void

Description This function saves the game in its current state so the player may resume
their adventure from the same location at a later time. It returns true if it
successfully overwrote the game. It returns false if it cannot save in the
current game state.

Class StateManager

Method QuitGame

Visibility public

Return void

Parameters void

Description This function pops game states until it is at the Main Menu state (which is
always at the bottom of the state stack).

Dragonlord Chronicles - Design

8

Class StateManager

Method GetCurrentState

Visibility public

Return GameState

Parameters void

Description This function returns the current state of the game.

Class StateManager

Method PushState

Visibility public

Return bool

Parameters GameState

Description This function pushes a new game state onto the state stack and then calls
OnStateEnter on the new state. The parameter is the new GameState.
The function returns false if the parameter is the same state as the current
state. It returns true otherwise.

Class StateManager

Method PopState

Visibility public

Return GameState

Parameters void

Description This function calls OnStateExit on the current state and then pops the
GameState that is on top of the state stack and then returns the popped
value.

Dragonlord Chronicles - Design

9

Class StateManager

Method TickState

Visibility public

Return void

Parameters float

Description This function runs logic on the GameState that is on top of the state stack
by calling OnStateTick. The parameter is used to track the delta time, and
it is passed into OnStateTick.

Class GameState

Method OnStateEnter

Visibility public

Return void

Parameters params object[]

Description This function handles any initialization when this state is entered. For
example, when a battle state is entered, the parameters would be the
player’s party and the enemy’s party along with their respective stats.

Class GameState

Method OnStateExit

Visibility public

Return void

Parameters out params object[]

Description This function handles anything that occurs when the state is exited. For
example, if a battle state is exited, the data passed through the parameter
would be based on the outcome of the battle (experience, new inventory
items, etc.)

Dragonlord Chronicles - Design

10

Class GameState

Method OnStateTick

Visibility public

Return void

Parameters float

Description This function implements the state behavior.

Class EntityManager

Method LoadEntityOfType

Visibility public

Return GameObject

Parameters Int, Vector3,

Description This function loads an entity based on the entity ID and the position of the
entity. The returned value is the instantiated GameObject. The behavior of
the instantiated entity will be defined by a MonoBehavior script attached to
the GameObject.

Class EntityManager

Method LoadAllScriptableObjects

Visibility public

Return List<ScriptableObject>

Parameters string

Description This function loads all scriptable objects, which is contains data for the
different types of entities (enemies, dragons, NPCs, player, etc.). It returns
each ScriptableObject as a list, which is used by the EntityManager to load
entities.

Dragonlord Chronicles - Design

11

Class EntityManager

Method DestroyEntity

Visibility public

Return void

Parameters Entity

Description Uses Unity’s Object.Destroy method to remove the GameObject, and it
removes the entity from the list of entities.

Class Entity : Monobehaviour

Method Awake

Visibility public

Return void

Parameters void

Description Overrides Unity’s Monobehaviour.Awake function. This can be used to
initialize data on the frame that the GameObject was instantiated.

Class Entity : Monobehaviour

Method Start

Visibility public

Return void

Parameters void

Description Overrides Unity’s Monobehaviour.Start function. This function is called one
frame after start and can be used for additional initialization.

Dragonlord Chronicles - Design

12

Class Entity : Monobehaviour

Method Update

Visibility public

Return void

Parameters void

Description Overrides Unity’s Monobehaviour.Update function. This can be used to
implement the entity’s behavior at runtime.

Class Inventory

Method AddItem

Visibility public

Return void

Parameters Item

Description Adds an item to the internal item list.

Class Inventory

Method RemoveItem

Visibility public

Return bool

Parameters Item

Description Removes an item from the internal item list if it matches the parameter.
Returns false if the character does not have the item. Returns true if the
character does have the item.

Dragonlord Chronicles - Design

13

Class Inventory

Method GetItemInformation

Visibility public

Return string[]

Parameters Item

Description Returns a string array that contains the item’s name, resell value, item
type, and other important information for the item.

Figure 2: Class Diagram. This shows how the custom data structures are related to each other.

Dragonlord Chronicles - Design

14

Detailed Design

Figure 3: A state chart showing the flow of game states in Dragonlord Chronicles. A player begins at the main menu
and can choose to start a new game or load a saved game. Then they can explore the overworld, use their menu,
shop, and enter battles. If they choose to quit the game from the player menu or if they lose a battle, the game will

go back to the main menu.

Dragonlord Chronicles - Design

15

Figure 4: A flowchart giving an overview of the game’s battle system.

Dragonlord Chronicles - Design

16

Figure 5: An activity diagram that shows the process of starting and loading a game.

Dragonlord Chronicles - Design

17

Figure 6: A flowchart giving an overview of the game’s shop system.

Dragonlord Chronicles - Design

18

User Interface Design

Figure 7: Main Menu. The screen shown when the game starts. Pressing “Continue” will load the previous save.

Pressing “New Game” will delete any save data and start the player from the beginning of the story. Pressing
“Options” will allow the player to configure settings for volume and input devices.

Figure 8: Options Menu to modify different sound and input settings or reset them to the default settings. The

SoundFX slider will change the volume of sound effects. The Music slider will change the volume of the background
music.

Dragonlord Chronicles - Design

19

Figure 9: NPC Dialogue Menu. When the player presses the action button near an NPC, they will be able to speak
to the player. The NPC will have an icon for their face and their name will be visible in the text box. There will be

an on-screen indicator for when the player may advance to the next text box.
.

Figure 10: Shop Menu. When the player talks to a shopkeeper, they may purchase items for their quest. Items will be
sorted based on their type (weapons, armor, support, and potions). The player may get a description of each item or

sell items from their own inventory.

Dragonlord Chronicles - Design

20

Figure 11: Equipment Menu shows the player’s stats and their inventory items. The player may equip weapons,

armor, and accessories to improve their stats, and the player may use items to heal, restore magic, and to support
them in battle.

Figure 12: Battle Menu. When the player encounters an enemy, they will enter a scene where they can make

turn-based decisions for battle. Fight will have the player use physical weapons. Magic will have the player call
their current dragon to use a spell. Defend will have the player enter a guard stance. Item will have the player

search their inventory for a support item. Flee will have the player escape the battle.

Dragonlord Chronicles - Design

21

Figure 13: Overworld Screen. During overworld exploration, the UI will be very minimal only displaying visual
cues for NPCs with quests and a minimap. An NPC with a quest will be denoted with a check mark for when it is

completed and a question mark for when there is a new quest.

Figure 14: Dragon Encyclopedia. As the player encounters and captures dragons, their stats (number, name, rarity,

element, class) will be displayed. Otherwise, that information will be denoted with “???”. If the player both
encountered and captured the dragon, a star will be in the final checkbox, allowing players to keep track of which

dragons they encountered and which ones they captured.

Dragonlord Chronicles - Design

22

Figure 15: Dragon Party. This screen shows the six dragons that the player may use during battle. The basic

information showed is the dragon’s health and a sprite showing the dragon’s design. More detailed information may
be found by selecting the dragon and clicking “view”. To change to a different dragon, the player may press

“swap”. To use an item on a dragon outside of battle, the player may press “swap”.

Figure 16: Dragon Stats. When the player selects one of their dragons to view, they will enter this menu, which

shows detailed information about how much XP points a dragon has gained, the elemental type, the abilities, and
the class type. The player may also get a description of each spell’s abilities.

Dragonlord Chronicles - Design

23

Figure 17: World Map. As the player explores the world, discovered locations will be pinned onto the map. The

player may skip travel to different locations by selecting the pin and then clicking warp. The name of the selected
region will be shown on the top of the screen. The region for the next main quest will be denoted with an

exclamation mark.

Figure 18: Quest Journal. As the player completes the main story, major events of the main quest will be logged

onto the quest journal. The data logged will be the quest reward, the name of the quest, a summary of the quest, and
its outcome.

Dragonlord Chronicles - Design

24

Glossary

Component A component defines specific attributes that may be attached to
GameObjects. The scriptable components are MonoBehaviors
while non-scriptable components are renderers, colliders,
rigidbodies, etc.

Equipment Virtual items that can be picked up by the game’s main character.

Frame Rate The number of visual updates per second

Game Engine Software that can be used to develop a video game

GameObject The fundamental objects in Unity that may represent graphics,
physics, and behaviors, depending on its attached components.

Gamepad A handheld controller for video games.

Gameplay The actions that the player takes while playing the game.

Game State A particular condition or behavior exhibited by the game.

Inventory A list of virtual items that the player is carrying.

MonoBehaviour The base class for every script component in Unity. This may be
attached to a GameObject to elicit game-specific behavior.

NPC Acronym for Non-Player Character, which refers to any in-game
character that cannot be controlled by the player

Overworld The area in the game that connects all of the locations

Player The end user of the game

Plot The main sequence of events in the game.

Prototype A preliminary model design to test the functionality or the design
of a product.

Quest A mission that the player may complete

Role Playing
Game (RPG)

A genre where players assume the role of a fictional character
who will have an adventure in their world.

Scene A distinct environment of the game.

Dragonlord Chronicles - Design

25

ScriptableObject A special container class that can represent data without a
GameObject.

Sprite A 2D image

Super Nintendo
Pixel Art

Minimalistic artwork where the image is comprised of a small pixel
resolution and a few colors per image.

Tilemap A 2D grid of images that are the same distance apart.

Top-Down A game where the player’s perspective of the world is from an
elevated viewpoint.

Turn-based
Combat

A battle system in which the player takes their turn and then the
enemy takes their turn.

Unity A game engine designed to create 2D and 3D games

UI User Interface for the player to interact with the software

Video Game A game played by manipulating images displayed on a monitor or
television.

Dragonlord Chronicles - Design

26

Contributions
Jonathan worked for approximately two and a half hours writing the title page, abstract,
introduction, and the Player and Dragon data structure descriptions.

Sean worked for four hours on the User Interface Design section, adding class diagram and the
method descriptions in the High Level Design section, and alphabetizing the glossary terms.

Christine worked for about three hours creating the system-level component based diagram and
the state chart for the game state, and writing descriptions for both.

Ryan worked for about three hours on the Detailed Design portion, creating the flowcharts and
activity diagram.

In addition, all team members spent approximately one and a half hours in a group meeting
deciding on elements of the game, such as story and mechanics, and planning out how they
would create this document.

Dragonlord Chronicles - Design

