

University of Nevada, Reno
College of Engineering

Department of Computer Science

Dragonlord Chronicles
Revised Specification and Design

Team 18

Sean Stevens

Jonathan Meade

Ryan Lieu

Christine Vaughan

Instructors
Sergiu Dascalu

Devrin Lee

Advisor
Eelke Folmer

CSE Department Chair

February 22, 2019

2

Table of Contents

Abstract & Introduction 3

Recent Project Changes 4

Project Changes in Specification 4

High Level Business Requirements 5

Technical Requirements Specification 6

Use Case Modeling 7

Requirement Traceability Matrix 12

Changes in Project Design 13

Updated High Level Design 13

Updated Class Descriptions 15

Updated UI Design 28

Glossary 34

Engineering Standards & Technologies 36

List of References 37

Contributions of Team Members 39

Revised Specification & Design

3

Abstract

Dragonlord Chronicles is designed to be an interactive Role-Playing Game (RPG) that
can be enjoyed by average players. The primary focus of the game is fighting,
capturing, and training dragons in a medieval fantasy setting, taking inspiration from
Nintendo’s ​Pokémon ​series. The game offers players with an immersive and engaging
narrative experience as well as complex strategy required for many of the combat
encounters. The game will be developed using Unity and programmed in C#. It will
feature 2D pixel art aesthetics to make it feel reminiscent of classic SNES RPGs.

Introduction

For our senior project, we will be developing an interactive Role Playing Game where
players will be able to explore an immersive, virtual world. This game is designed to
allow people to relieve stress and have fun playing with the mechanics that the game
will offer.

The theme of the game is a fantasy setting, with technologies from the bronze age, in
conjunction with magical forces. The people of the world worship dragons as their divine
creators and they believe that dragons are responsible for the magical elements of
nature (earth, water, fire, and air).

As the player explores the world, they will talk to NPCs, complete quests, and gain
insight to the characters who inhabit the world. The player will explore different biomes
in search of the divine dragons to obtain the power needed to seal away a great evil and
save the world.

There will be a turn based combat system where the player will have a limited amount
of time to decide the turn they will make. They will be able to fight with a weapon, use
magic, or use a potion during battle to defeat enemies. There will also be a stats system
where each characters stats will have an affect in the outcome of battle.

There will also be an inventory system where the player has to manage their weapons
and armor. In addition, when the player explores “cold” and “hot” sections of the world,
they may need to change their armor or use a potion that would enable them to traverse
the environment.

Revised Specification & Design

4

The game will be controllable with a keyboard and mouse or with an Xbox controller. It
will be developed using Unity and written in C#.

The changes in the project between now and the proposal from PA1 is mainly that we
have fleshed out the game’s setting, story, and gameplay. These changes were made
because we needed a more specific idea for the game’s setting and gameplay. Now
that we have a better idea for the direction of our final project, we will be able to create a
more refined and fun game.

Recent Project Changes

Since project P1, there has only been one change to the game. The decision was made
to change the overall layout of the world from a single, continuous space to a series of
areas separated by loading screens. This change was made primarily for performance
reasons, but also to more easily add location-based constraints to the random dragon
generation algorithm.

Summary of Changes in Project Specification

There have been several updates to the project specifications since Fall 2018. The high
level business requirements have been updated to more concisely define the project’s
goals. The technical requirements have also been updated to better reflect the features
we will implement, or in the case of L3 would like to implement. The Use Case diagram
has been fixed, and some of the detailed use cases have been rewritten for length and
clarity.

Revised Specification & Design

5

High Level Business Requirements

The goal of this project is to fulfill the CS 425/426 Senior Project requirements by
creating a digital RPG.

1. The game should be an RPG and feature a main character and several dragon
companions.

2. The main character should be able to capture and train new dragon companions.
3. The game should feature a list of all the different types of dragons, with

information on each.
4. The game should be marketable towards gamers of every age group, with

content that various audiences can find enjoyable. The plot of the game should
be engaging enough to keep an adult player interested, but not too complex for a
younger player.

5. The game should contain minimal profanity and no content that is inappropriate
for children to ensure that it remains marketable to that demographic.

6. The game should be released for PC through digital downloads.

Revised Specification & Design

6

Technical Requirements Specification

[L1] Denotes requirements we plan to implement by the end of Spring 2019.
[L2] Denotes requirements we might implement by the end of Spring 2019.
[L3] Denotes requirements we would like to implement, but most likely will not be
completed by the end of Spring 2019.

Functional Requirements:

FR01 [L1] The game will have a main menu display.

FR02 [L1] The game will have character dialogue boxes.

FR03 [L1] The player will be able to encounter, fight, and capture various randomly
generated dragons.

FR04 [L1] The player will be able to select their captured dragons and train them to
increase their combat skills.

FR05 [L1] The game will have an in-game menu with different submenus.

FR06 [L1] The game will have options to adjust volume and input devices.

FR07 [L1] The world map will be comprised of several areas, separated by loading
screens.

FR08 [L2] The game will have music audio.

FR09 [L2] The player will be able to visually customize their character.

FR10 [L2] The player will have different means of capturing dragons, some of which
may be more effective than others.

FR11 [L2] The player will gain information on a specific type of dragon the more it is
encountered/captured.

FR12 [L3] All sprites will be fully animated.

FR13 [L3] The game will feature a morality system (ie. good vs. evil), which is
impacted by the player’s actions.

Revised Specification & Design

7

FR14 [L3] The game will have visual options for colorblindness modes (black & white
and inverted colors).

Non-functional Requirements:

NFR01 [L1] The game will be playable on Windows platforms.

NFR02 [L1] The game will be controllable with both a keyboard & mouse setup and a
gamepad.

NFR03 [L1] The game will have pixel art reminiscent of Super Nintendo RPGs.

NFR04 [L1] The game will be developed using Unity.

NFR05 [L1] The game will not have a loading time of more than two seconds when
transitioning to a new scene.

NFR06 [L1] The game’s assets will be loaded from disk through the “streamingAssets”
folder.

NFR07 [L1] The game will be saved using JSON Serialization.

NFR08 [L2] The game will support multiple monitor resolutions and aspect ratios.

NFR09 [L2] The game will be able to automatically recover from unexpected bugs and
crashes.

NFR10 [L3] The game may release on the Nintendo Switch.

Revised Specification & Design

8

Use Case Modeling

Figure 1: A use case diagram for Dragonlord Chronicles.

Revised Specification & Design

9

Use Case Descriptions

Identifier Name Description

UC01 User Input
The game will detect input from keyboard or other game

controller. This will be used to navigate menus and control
the main character during gameplay.

UC02 Continue
Finds and loads a previously saved game from a file and
allows the player to continue playing their game from the

state it was in when it was saved.

UC03 New Game If a save file exists, it will be deleted. A new file that starts
from the beginning of the game will be created.

UC04 Interact
The player may interact with different virtual objects and
characters within the world. The details of the interaction

depend on the object or character.

UC05 Proceed
Dialogue

When the interact button is pressed near certain NPCs, a
dialogue box will appear. Pressing the same button will

cause the next lines to appear until that dialogue script is
exhausted..

UC06 Player Menu
The player can pause the game and open a menu with

several options, allowing the player to see their equipment,
items, or dragons, save their game, or change their options.

UC07 Equipment
Menu

This menu shows all of the player’s equipable items with
submenus for each type of equipable item. It also provides

the stats for the players equipped items.

UC08 Armor Menu

This menu displays each armor that the player is carrying.
Armor is used to protect the player from attacks. The player
may get a description, drop, or equip any of the armors in

this menu.

UC09 Weapon
Menu

This menu displays each weapon that the player is carrying.
Weapons are used for fighting enemies. The player may get

a description, drop, or equip any of the weapons in this
menu.

Revised Specification & Design

10

UC10 Accessory
Menu

This menu displays each accessory that the player is
carrying. Accessories can augment the player’s abilities.

The player may get a description, drop, or equip any
accessories in this menu.

UC11 Item Menu
This menu has all items that the player is carrying. Unlike
equipment, these cannot be equipped but they can still be

used in battle or in the overworld.

UC12 Options This menu allows the user to adjust settings for the game’s
input controls, audio levels, and window size.

UC13 Adjust
Volume

Allows the user to change the volume of the game’s sound
effects and music.

UC14 Input
Settings

Allows the user to choose if they want to play the game with
a keyboard device or some other game controller.

UC15 Default
Settings

This resets all of the audio and input settings to their default
configurations. These match the settings as they are when

a new game is first loaded.

UC16 Save Game The player’s current progress and state are saved to a file
in the system’s memory and can be loaded at a later time.

UC17 Main Menu
This is the initial scene in the game. It displays buttons that

allow the player to go to the options menu, continue a
previously saved game, or start a new game.

UC18 Load
Overworld

Upon loading a saved game, the section of the overworld
that the player saved in and the player character’s

coordinates will be loaded. In the case of a new game, the
starting section and coordinates will be used.

UC19 Initiate
Battle

When the player encounters an enemy in the overworld, a
new scene will load and the player will have a turn-based

battle.

Revised Specification & Design

11

Extended Descriptions

Use Case: User Input

Tag: UC01

Actors: Player

Preconditions:
1. The player has their preferred input device (keyboard or controller).
2. The input device setting in the options menu is set to the player’s preferred

input device.
3. The game has been loaded.

Events:
1. The player presses a key or button recognized by the game.
2. The game responds based on the button pushed.

a. If a directional key or button is pushed, the character or cursor
(depending on the game’s state) will move in the indicated direction.

b. If the “select” key or button is pushed, the character will interact with
whatever is in front of it, or the element the cursor is pointing to will be
selected, depending on the game’s state.

c. If the “menu” key or button is selected, the player menu will open.
d. If the “exit” key or button is pushed, the current menu will be closed.

Postconditions:
1. The player character’s or cursor’s position changes, an interaction with an

object or character in the game world occurs, a selection is made, or a menu
closes.

Use Case: Proceed Dialogue

Tag: UC05

Actors: Player

Preconditions:
1. The player has interacted with an object or a NPC or triggered a cutscene.

2. The current game screen shows a dialogue box.

Events:
1. The current line of dialogue appears in the dialogue box.

2. The player presses the “select” key or button.

Revised Specification & Design

12

Postconditions
1. The current line of dialogue disappears and the next line appears in the

dialogue box, or the dialogue box closes if the current line is the last line.

Use Case: Player Menu

Tag: UC06

Actors: Player

Preconditions:
1. The game state is in the overworld.

2. The game state is not in a battle, shop, dialogue screen, or cutscene.

Events:
1. The player pushes the “menu” key or button.

2. The game world pauses; nothing in the overworld will move or act in any way,
including the player character.

3. The player menu appears on the screen, with several different options that
allow the player to see information about their character and inventories and

modify them in various ways, open the options menu, or save their game.

Postconditions:
1. The game world is paused except for the menu.

2. The player menu is open.
3. The player can traverse the player menu with a cursor by pushing the

directional keys or buttons.
4. The player can make a selection in the menu by pushing the “select” key or

button.
5. The player can exit the menu and unpause the game world by pushing the

“exit” button.

Revised Specification & Design

13

Requirement Traceability Matrix

 FR01 FR02 FR03 FR04 FR05 FR06 FR07 FR08 FR09 FR10 FR11 FR12 FR13 FR14 FR15

UC01 x x x x x x

UC02 x

UC03 x

UC04 x x x x x x

UC05 x x x x

UC06 x x

UC07 x x

UC08 x x

UC09 x x

UC10 x x

UC11 x

UC12 x x x

UC13 x x x

UC14 x x x

UC15 x x

UC16 x

UC17 x

UC18 x x

UC19 x x x x x

Revised Specification & Design

14

Changes in Project Design

We created a public static class called “Global Flags”, which will make transitioning
between scenes easier. Instead of pushing data to the StateManager so the correct
state can retrieve the data, data will be sent to the GlobalFlags class and then pulled by
the appropriate system when needed. We also added a CombatManager class, which
will handle the interactions between the player and the in-game enemies.

Updated High and Medium Level Design

Figure 2: A component-based system level diagram of Dragonlord Chronicles’ structure.

Figure 2 shows a model of the component structure of the game. The video game
hardware will be a Windows machine or a gaming console (time permitting). It will
accept player input via a keyboard or game controller and will provide the visual and
auditory outputs of the game through a screen and speakers. Unity’s game engine will
handle the execution of the game, including visuals, music and sound effects, and all
C# scripts that dictate how the game will respond to player input. Assets is a directory
which will hold all scripts, sprites and other art, audio files, and any other data the game
may need to retrieve.

For the data structures, Unity offers a special object called a scriptable object. A
scriptable object is a data container that hold relevant information used to instantiate
objects within a scene in Unity. In this game, the player will have its own unique
scriptable object, and all dragons will have their own scriptable object associated with
them.

Revised Specification & Design

15

The player’s scriptable object will have the following attributes:

● Health:​ A representation of the amount of damage taken. When health reaches
zero, the player dies.

● Offense:​ A numeric representation of how well the player is able to inflict
damage on enemies.

● Defense:​ A numeric representation of how well the player is able to mitigate
damage from enemies.

● Gold:​ A numeric value representing the currency in the player’s possession.
● Inventory:​ A list of all items in the possession of the player.
● Party:​ A list of the dragons currently accompanying the player, to a maximum of

four.
● Default Dragon:​ The default dragon that will assist a player in combat. The

Default Dragon must be in the player’s Party and may be changed outside of
combat.

● Active Dragon:​ The dragon currently assisting the player in combat. The Active
Dragon is always the Default Dragon at the beginning of combat, but may be
swapped for another dragon in the player’s Party during combat.

The dragons will have a generalized scriptable object. Each attribute will be assigned
when the dragon is first created. If the dragon is captured by the player, the object will
be saved and attached to the dragon permanently, else it will be deleted once the
combat has concluded.

● Health:​ A representation of the amount of damage taken.
● Element:​ The element the dragon is associated with. A dragon may have exactly

one element, which may not be changed. Possible elements include but are not
limited to: Fire, Ice, Water, Earth, Lightning, Air, Flora, Fauna, Light, and Dark.

● Level:​ A numerical value that determines the strength of the dragon’s Offense
and Defense stats. Can be increased by gaining experience.

● Experience:​ A numeric value that increases a dragon’s level whenever a
threshold is reached. Experience is gained following a combat, and the amount
gained is proportional to the level of the enemy defeated.

● Tier:​ A numeric value that represents a dragon’s magical capabilities and
available spells. Unlike experience, tiers can only be gained by performing
special rituals which require rare and expensive components.

● Offense:​ A numeric representation of how well the dragon is able to inflict
damage on enemies.

● Defense:​ A numeric representation of how well the dragon is able to mitigate
damage from enemies.

Revised Specification & Design

16

● Magic:​ A list of all the spells a dragon is capable of casting.

The following tables describe main data structures that will be used in the project:

Class StateManager

Method LoadGame

Visibility public

Return bool

Parameters string

Description This function loads the latest save. The parameter is the persistent
data path. It returns true if save data exists and it is readable. It
returns false if no data can be loaded.

Class StateManager

Method SaveGame

Visibility public

Return bool

Parameters void

Description This function saves the game in its current state so the player may
resume their adventure from the same location at a later time. It
returns true if it successfully overwrote the game. It returns false if it
cannot save in the current game state.

Class StateManager

Method QuitGame

Visibility public

Return void

Parameters void

Revised Specification & Design

17

Description This function pops game states until it is at the Main Menu state
(which is always at the bottom of the state stack).

Class StateManager

Method GetCurrentState

Visibility public

Return GameState

Parameters void

Description This function returns the current state of the game.

Class StateManager

Method PushState

Visibility public

Return bool

Parameters GameState

Description This function pushes a new game state onto the state stack and
then calls OnStateEnter on the new state. The parameter is the new
GameState. The function returns false if the parameter is the same
state as the current state. It returns true otherwise.

Class StateManager

Method PopState

Visibility public

Return GameState

Parameters void

Revised Specification & Design

18

Description This function calls OnStateExit on the current state and then pops
the GameState that is on top of the state stack and then returns the
popped value.

Class StateManager

Method TickState

Visibility public

Return void

Parameters float

Description This function runs logic on the GameState that is on top of the state
stack by calling OnStateTick. The parameter is used to track the
delta time, and it is passed into OnStateTick.

Class GameState

Method OnStateEnter

Visibility public

Return void

Parameters params object[]

Description This function handles any initialization when this state is entered.
For example, when a battle state is entered, the parameters would
be the player’s party and the enemy’s party along with their
respective stats.

Class GameState

Method OnStateExit

Visibility public

Return void

Revised Specification & Design

19

Parameters out params object[]

Description This function handles anything that occurs when the state is exited.
For example, if a battle state is exited, the data passed through the
parameter would be based on the outcome of the battle
(experience, new inventory items, etc.)

Class GameState

Method OnStateTick

Visibility public

Return void

Parameters float

Description This function implements the state behavior.

Class EntityManager

Method LoadEntityOfType

Visibility public

Return GameObject

Parameters Int, Vector3,

Description This function loads an entity based on the entity ID and the position
of the entity. The returned value is the instantiated GameObject.
The behavior of the instantiated entity will be defined by a
MonoBehavior script attached to the GameObject.

Class EntityManager

Method LoadAllScriptableObjects

Visibility public

Revised Specification & Design

20

Return List<ScriptableObject>

Parameters string

Description This function loads all scriptable objects, which is contains data for
the different types of entities (enemies, dragons, NPCs, player, etc.).
It returns each ScriptableObject as a list, which is used by the
EntityManager to load entities.

Class EntityManager

Method DestroyEntity

Visibility public

Return void

Parameters Entity

Description Uses Unity’s Object.Destroy method to remove the GameObject,
and it removes the entity from the list of entities.

Class Entity : Monobehaviour

Method Awake

Visibility public

Return void

Parameters void

Description Overrides Unity’s Monobehaviour.Awake function. This can be used
to initialize data on the frame that the GameObject was instantiated.

Class Entity : Monobehaviour

Method Start

Visibility public

Return void

Revised Specification & Design

21

Parameters void

Description Overrides Unity’s Monobehaviour.Start function. This function is
called one frame after start and can be used for additional
initialization.

Class Entity : Monobehaviour

Method Update

Visibility public

Return void

Parameters void

Description Overrides Unity’s Monobehaviour.Update function. This can be used
to implement the entity’s behavior at runtime.

Class Inventory

Method AddItem

Visibility public

Return void

Parameters Item

Description Adds an item to the internal item list.

Class Inventory

Method RemoveItem

Visibility public

Revised Specification & Design

22

Return bool

Parameters Item

Description Removes an item from the internal item list if it matches the
parameter. Returns false if the character does not have the item.
Returns true if the character does have the item.

Class Inventory

Method GetItemInformation

Visibility public

Return string[]

Parameters Item

Description Returns a string array that contains the item’s name, resell value,
item type, and other important information for the item.

Class GlobalFlags

Method GetCurrentOverworldScene

Visibility public

Return string

Parameters void

Description Returns the name of the current overworld scene that should be
loaded so the correct overworld scene can be loaded.

Class GlobalFlags

Method SetCurrentOverworldScene

Revised Specification & Design

23

Visibility public

Return void

Parameters string

Description Sets the name of the current overworld scene, so the game can load
the correct scene during transitions (i.e from battle to overworld or
overworld section to another section).

Class GlobalFlags

Method GetCurrentBattleScene

Visibility public

Return string

Parameters void

Description Returns the name of the current battle scene that should be loaded.

Class GlobalFlags

Method SetCurrentBattleScene

Visibility public

Return void

Parameters string

Description Sets the name of the current battle scene that should be loaded so
the correct battle scene can be loaded during transitions.

Class GlobalFlags

Revised Specification & Design

24

Method SetCombatManagerFlags

Visibility public

Return void

Parameters EntityData, EntityData, EntityData

Description Sets the player, enemy, and dragon data in a combat scene.

Class GlobalFlags

Method GetCombatManagerFlags

Visibility public

Return void

Parameters out EntityData, out EntityData, out EntityData

Description Retrieves the player, enemy, and dragon data so it can be used by
the CombatManager.

Class CombatManager

Method TakeRound

Visibility public

Return void

Parameters void

Description This function will act out the actions input by the player and the
enemy classes.

Revised Specification & Design

25

Figure 3: Class Diagram. This shows how the custom data structures are related to each other.

Revised Specification & Design

26

Detailed Design

Figure 4: A state chart showing the flow of game states in Dragonlord Chronicles. A player begins at the main menu
and can choose to start a new game or load a saved game. Then they can explore the overworld, use their menu,
shop, and enter battles. If they choose to quit the game from the player menu or if they lose a battle, the game will

go back to the main menu.

Revised Specification & Design

27

Figure 5: A flowchart giving an overview of the game’s battle system.

Revised Specification & Design

28

Figure 6: An activity diagram that shows the process of starting and loading a game.

Revised Specification & Design

29

Figure 7: A flowchart giving an overview of the game’s shop system.

Revised Specification & Design

30

Updated UI Design

Figure 8: Main Menu. The screen shown when the game starts.

Figure 9: NPC Dialogue Menu. When the player presses the action button near an NPC, they will speak to the

player.
.

Revised Specification & Design

31

Figure 10: Shop Menu. When the player talks to a shopkeeper, they may purchase items for their quest.

Figure 11: Equipment Menu for when the player is managing their weapons/armor, taking potions.

Revised Specification & Design

32

Figure 12: Battle Menu. When the player encounters an enemy, they will enter a scene where they can make

turn-based decisions for battle.

Figure 13: Overworld Screen. During overworld exploration, the UI will be very minimal only displaying visual

cues for NPCs with quests and a minimap.

Revised Specification & Design

33

Figure 14: Dragon Encyclopedia. This will detail the different types of dragons encountered over the course of the

game. Captured dragons will be shown with a star, so the player can differentiate encountered dragons and
captured dragons.

Figure 15: Dragon Party. This screen shows general information about the current set of dragon’s in the player’s

party, with options to use an item on the dragons and to swap them with a different character.

Revised Specification & Design

34

Figure 16: Dragon Stats. When the player selects one of their dragons to view, they will enter this menu, which

shows detailed information about the current dragon.

Figure 17: World Map. As the player discovers locations, they will unveil more of the world map. The player may

skip travel to different locations by clicking on the map.

Revised Specification & Design

35

Figure 18: Quest Journal. As the player completes the main story, major events will be logged into this journal. The

data shows will be the quest reward, quest status (completed, failed, in-task), a summary of the quest, and its
outcome.

Revised Specification & Design

36

Glossary
Component The specific attribute(s) that may be attached to GameObjects.

Equipment Virtual items that can be picked up by characters.

Frame Rate The number of visual updates per second.

Game Engine Software that can be used to develop a video game

GameObject The fundamental objects in Unity that may represent graphics,
physics, and behaviors depending on the attached components.

Gamepad A handheld controller for video games

Gameplay The actions that the player takes while playing the game.

Game State A particular condition or behavior exhibited by the game.

Inventory A list of virtual items that the player is carrying

MonoBehaviour The base class for every scriptable component in Unity. This may
be used to elicit game-specific behavior on a GameObject.

NPC Non-Player Character. Any character that cannot be directly
controlled by the player.

Overworld The area in the game that connects all of the locations.

Player The end user of the game.

Pixel Art Minimalistic artwork where the image is comprised of a small pixel
resolution and a few colors per image.

Plot The main sequence of events in the game.

Prototype A preliminary model design to test the functionality or the design
of a product.

Quest A mission that the player may complete

Role Playing
Game (RPG)

A genre where players assume the role of a fictional character
who will have an adventure in their world.

Scene A distinct environment of the game.

ScriptableObject A special container class that can represent data without a
GameObject

Revised Specification & Design

37

Sprite A 2D image

Tilemap A 2D grid of images that are the same distance apart.

Top-Down A game where the player’s perspective is from an elevated
viewpoint

Turn-based
Combat

A battle system in which the player takes their turn and then the
enemy takes their turn.

Unity A game engine designed to create 2D and 3D games, developed
by UnityTechnologies.

UI A User Interface (UI) allows the player to interact with the
software.

Video Game A game played by manipulating images displayed on a monitor or
television.

Revised Specification & Design

38

Engineering Standards & Technologies
Standards:

ISO/IEEE 12207: Systems and Software Engineering: Software Lifecycle Processes.
This standard establishes a set of processes for managing the lifecycle of software. We
will use this to satisfy our target audience by creating a game that meets their
expectations.

ISO 9000: Series of Standards refers to the seven quality management principles. We
will use this standard to effectively manage our project.

UML: Unified Modeling System is the method for designing the architecture of software.
This will be used to design and document the models that will be used in our game’s
systems.

Technologies:

Pyxel Edit. This software is designed to create minimalistic pixel art. It will be used to
create the sprites, tiles, and animations for our game.

UnityEngine. This software is a game engine which will be used to create the game.

Visual Studio. This software is an IDE that will be used with Unity to create C# scripts.

C#. This is a programming language, designed to be a variant of C but with a garbage
collector like Java. This will be used to create scripts.

Unity Collaboration. This is a service provided by Unity that allows teams to work
together. We will use this to track progress and keep our work synchronized with each
other.

Revised Specification & Design

39

List of References

Book:

Introduction to Game Design, Prototyping, and Development Second Edition (Jeremy
Gibson Bond)

Jeremy Gibson worked as both a professor of game design and a game developer. He
wrote this book to teach others how to prototype a game and develop it into a
fleshed-out, playable product. The book emphasizes using Unity and C#, but the skills
can be applied to making a game in any language and any engine.

Reference Articles:

Game Development “Tales of Mamochi” with Role Playing Game Concept Based on
Android

This journal details the development of the Role-Playing Game (RPG) “Tales of
Mamochi”. This game features a variety of different mechanics such as Person vs.
Environment combat, crafting, farming, cooking, and questing. This game is designed to
be fun, so players can enjoy it at their leisure.

​Critical Success Factors to Improve the Game Development Process from a
Developer's Perspective

This journal details the factors that contribute to developing quality software. This study
was created after observing that there is a lot of pressure on upcoming developers to
build a game that meets expectations. The study also discusses how developers can
remain competitive in a growing industry and handle the pressure that comes with being
a software developer.

Game Development Software Engineering Process Life Cycle: A Systematic Review

This journal discusses how game development requires synthesis between sound, art,
input systems, artificial intelligence, and other factors. This study assesses the
state-of-the-art research on the game development process and highlights areas that
need to be researched and refined further, so the process may be improved.

Revised Specification & Design

40

Practices and Technologies in Computer Game Software Engineering

This journal discusses the techniques and technologies that are used when developing
video games. It also mentions how game developers, regardless of their focus on
entertainment or non-entertainment applications, each share an interest in the best
methodology to engineer software.

Websites:

GDC 2017 - Hitchhiker’s Guide to Rapid Prototypes
https://www.youtube.com/watch?v=sYWkiv1hTPM

Game Developers Conference is the gaming industry’s largest global event where game
developers discuss very helpful tips to both novice and expert developers to improve
their games. This talk discussed how to quickly build a prototype that tests the core
functionality of a game. Some of the helpful tips were: focusing on urgent goals and
creating the minimum viable interaction.

Unity User Manual: ​https://docs.unity3d.com/Manual/index.html

The official Unity manual contains descriptions and examples on all the features that
Unity provides. This includes tutorials on creating 2D games, scripting in C#, creating
audio, using the UI system, and using the physics system. It also has documentation on
how to use the Unity API. Unity’s manual is well-organized, so it will be beneficial for
learning how to implement certain mechanics into our game.

Brackeys: ​http://brackeys.com/

The Brackeys contains many tutorials for creating a variety of different types of games
in Unity. He has tutorials on platformers, Pong, and a 3D RPG. He has also done
tutorials on more specific subjects such as using ScriptableObjects. The Brackeys
website contains free assets that could be used for prototyping our game. The only
drawback is that, since Brackeys has been doing tutorials since 2012, some of the
tutorials use Unity functions that have since been deprecated.

quill18creates YouTube Channel: ​https://www.youtube.com/user/quill18creates

This YouTube channel contains many helpful tutorials for creating fleshed out games in
Unity opposed to creating one-off games. For example, his Base-Building Game tutorial

Revised Specification & Design

https://www.youtube.com/watch?v=sYWkiv1hTPM
https://docs.unity3d.com/Manual/index.html
http://brackeys.com/
https://www.youtube.com/user/quill18creates

41

goes in-depth to creating tile systems, loading files from disk, AI Pathfinding, and other
features to create a base-building game. He has also done tutorials for creating a
Civilization-style game in a hexagonal grid. These tutorials will help us understand how
to create a game with a larger scope than the other tutorial sites provided.

Revised Specification & Design

42

Contributions of Team Members

Sean spent about three hours updating the List of References, adding a few terms to
the glossary, and explaining a few of the classes defined in the High Level Design
section. He also wrote the Engineering Standards and Technologies section.

Jonathan spent approximately an hour and a half rewriting the high level business
requirements, updating functional and non-functional requirements, and added the
recent project changes section.

Christine spent about an hour and a half summarizing the specification changes,
updating the Use Case Diagram and the detailed use case descriptions, and making
various formatting fixes.

Ryan spent about an hour updating the UI Design portion and editing the paper.

Revised Specification & Design

